A Model-Based Formulation of Robust Design
نویسندگان
چکیده
Laid down in this paper are the foundations on which the design of engineering systems, in the presence of an uncontrollable changing environment, can be based. The changes in environment conditions are accounted for by means of robustness. To this end, a theoretical framework as well as a general methodology for model-based robust design are proposed. Within this framework, all quantities involved in a design task are classified into three sets: the design variables (DV), grouped in vector x, which are to be assigned values as an outcome of the design task; the design-environment parameters (DEP), grouped in vector p, over which the designer has no control; and the performance functions (PF), grouped in vector f, representing the functional relations among performance, DV, and DEP. A distinction is made between global robust design and local robust design, this paper focusing on the latter. The robust design problem is formulated as the minimization of a norm of the covariance matrix of the variations in PF upon variations in the DEP, aka noise in the literature on robust design. Moreover, one pertinent concept is introduced: design isotropy. We show that isotropic designs lead to robustness, even in the absence of knowledge of the statistical properties of the variations of the DEP. To demonstrate our approach, a few examples are included. @DOI: 10.1115/1.1829728#
منابع مشابه
A Robust Reliable Closed Loop Supply Chain Network Design under Uncertainty: A Case Study in Equipment Training Centers
The aim of this paper is to propose a robust reliable bi-objective supply chain network design (SCND) model that is capable of controlling different kinds of uncertainties, concurrently. In this regard, stochastic bi-level scenario based programming approach which is used to model various scenarios related to strike of disruptions. The well-known method helps to overcome adverse effects of disr...
متن کاملA Robust Adaptive Observer-Based Time Varying Fault Estimation
This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...
متن کاملRobust Controller Design Based-on Aerodynamic Load Simulator Identification Driven by PMSM for Hardware-in-the-Loop Simulations
Aerodynamic load simulators generate the required time varying load to test the actuator’s performance in the laboratory. Electric Load Simulator (ELS) as one of variety of the dynamic load simulators should follows the rotation of the Under Test Actuator (UTA) and applies the desired torque to UTA’s rotor at the same time. In such a situation, a very large torque is imposed to the ELS from the...
متن کاملFuzzy Approximation Model-based Robust Controller Design for Speed Control of BLDC Motor
This paper presents a new controller for speed control problem of the BLDC motors. The nonlinear model of the motor is approximated by implementation of fuzzy rules. The uncertainties are considered in the fuzzy system. Using this model and linear matrix inequality (LMI) optimization, a robust controller for purpose of speed control of the motor has been designed and applied to it. The effectiv...
متن کاملAerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)
An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...
متن کاملSolving Path Following Problem for Car-Like Robot in the Presence of Sliding Effect via LMI Formulation
One of the main problems of car-like robot is robust path following in the presence of sliding effect. To tackle this problem, a robust mix H2/H∞ static state feedback control method is selected. This method is the well-known linear robust controller which is robust against external disturbance as well as model uncertainty. In this paper, the path following problem is formulated as linear matri...
متن کامل